Search results for "growth differentiation factors"
showing 10 items of 10 documents
Growth and differentiation factor 11 (GDF11): Functions in the regulation of erythropoiesis and cardiac regeneration
2015
International audience; Members of the TGF-β superfamily transduce their signals through type I and II receptor serine/threonine kinases. The binding of activins to activin type IIA (ActRIIA) or type IIB (ActRIIB) receptors induces the recruitment and phosphorylation of an activin type I receptor (ALK4 and/or ALK7), which then phosphorylates the Smad2 and Smad3 intracellular signaling proteins. The regulation of members of the TGF-β family is known to be complex, because many proteins able to bind the ligands and inhibit their activities have been identified. Growth and differentiation factor 11 (Gdf11) belongs to the TGF-β family. GDF11, like other members of the TGF-β superfamily, is prod…
Anti-Aging Effects of GDF11 on Skin
2020
International audience; Human skin is composed of three layers: the epidermis, the dermis, and the hypodermis. The epidermis has four major cell layers made up of keratinocytes in varying stages of progressive differentiation. Skin aging is a multi-factorial process that affects every phase of its biology and function. The expression profiles of inflammation-related genes analyzed in resident immune cells demonstrated that these cells have a strong ability to regenerate adult skin stem cells and to produce endogenous substances such as growth differentiation factor 11 (GDF11). GDF11 appears to be the key to progenitor proliferation and/or differentiation. The preservation of youthful phenot…
The oocyte derived growth factors, GDF9 and GDF9B, and their biological activities in 'in vitro' cell models
2007
Systemic blockade of ACVR2B ligands attenuates muscle wasting in ischemic heart failure without compromising cardiac function
2020
Signaling through activin receptors regulates skeletal muscle mass and activin receptor 2B (ACVR2B) ligands are also suggested to participate in myocardial infarction (MI) pathology in the heart. In this study, we determined the effect of systemic blockade of ACVR2B ligands on cardiac function in experimental MI, and defined its efficacy to revert muscle wasting in ischemic heart failure (HF). Mice were treated with soluble ACVR2B decoy receptor (ACVR2B-Fc) to study its effect on post-MI cardiac remodeling and on later HF. Cardiac function was determined with echocardiography, and myocardium analyzed with histological and biochemical methods for hypertrophy and fibrosis. Pharmacological blo…
Systemic blockade of ACVR2B ligands protects myocardium from acute ischemia-reperfusion injury
2019
Activin A and myostatin, members of the transforming growth factor (TGF)-β superfamily of secreted factors, are potent negative regulators of muscle growth, but their contribution to myocardial ischemia-reperfusion (IR) injury is not known. The aim of this study was to investigate if activin 2B (ACVR2B) receptor ligands contribute to myocardial IR injury. Mice were treated with soluble ACVR2B decoy receptor (ACVR2B-Fc) and subjected to myocardial ischemia followed by reperfusion for 6 or 24 h. Systemic blockade of ACVR2B ligands by ACVR2B-Fc was protective against cardiac IR injury, as evidenced by reduced infarcted area, apoptosis, and autophagy and better preserved LV systolic function fo…
A member of the TGF-β superfamily, GDF11: functions in the cardiac regeneration, perhaps an “elixir of youth?”
2015
GDF11 induces mild hepatic fibrosis independent of metabolic health
2020
BACKGROUND & AIMS: Growth Differentiation Factor 11 (GDF11) is an anti-aging factor, yet its role in liver diseases is not established. We evaluated the role of GDF11 in healthy conditions and in the transition from non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH). RESULTS: GDF11 mRNA levels positively correlated with NAFLD activity score and with CPT1, SREBP, PPAR? and Col1A1 mRNA levels, and associated to portal fibrosis, in morbidly obese patients with NAFLD/NASH. GDF11-treated mice showed mildly exacerbated hepatic collagen deposition, accompanied by weight loss and without changes in liver steatosis or inflammation. GDF11 triggered ALK5-dependent SMAD2/…
Neuroprotective Potential of GDF11: Myth or Reality?
2019
In the brain, aging is accompanied by cellular and functional deficiencies that promote vulnerability to neurodegenerative disorders. In blood plasma from young and old animals, various factors such as growth differentiation factor 11 (GDF11), whose levels are elevated in young animals, have been identified. The blood concentrations of these factors appear to be inversely correlated with the age-related decline of neurogenesis. The identification of GDF11 as a “rejuvenating factor” opens up perspectives for the treatment of neurodegenerative diseases. As a pro-neurogenic and pro-angiogenic agent, GDF11 may constitute a basis for novel therapeutic strategies.
GDF11 exhibits tumor suppressive properties in hepatocellular carcinoma cells by restricting clonal expansion and invasion.
2019
Growth differentiation factor 11 (GDF11) has been characterized as a key regulator of differentiation in cells that retain stemness features, despite some controversies in age-related studies. GDF11 has been poorly investigated in cancer, particularly in those with stemness capacity, such as hepatocellular carcinoma (HCC), one of the most aggressive cancers worldwide. Here, we focused on investigating the effects of GDF11 in liver cancer cells. GDF11 treatment significantly reduced proliferation, colony and spheroid formation in HCC cell lines. Consistently, down-regulation of CDK6, cyclin D1, cyclin A, and concomitant upregulation of p27 was observed after 24 h of treatment. Interestingly,…
“Pro-youthful” factors in the “labyrinth” of cardiac rejuvenation
2016
IF 3.350; International audience; The mechanisms of aging and senescence include various endogenous and exogenous factors. Among cardiovascular diseases, heart failure is a typical age-related disease. New strategies to restore cardiomyocyte cells have been reported: endogenous substances that can regenerate the heart's cardiomyocytes have been described: follistatin like 1 (FSTL1), growth-differentiation factor 11 (GDF11) and insulin-like growth factor 1 (IGF-I). Manipulation of the different anti and pro-pathways is essential to discover new approaches to regenerative therapies. (C) 2016 Elsevier Inc. All rights reserved.